Dual-Phase Cardiac Diffusion Tensor Imaging with Strain Correction

نویسندگان

  • Christian T. Stoeck
  • Aleksandra Kalinowska
  • Constantin von Deuster
  • Jack Harmer
  • Rachel W. Chan
  • Markus Niemann
  • Robert Manka
  • David Atkinson
  • David E. Sosnovik
  • Choukri Mekkaoui
  • Sebastian Kozerke
چکیده

PURPOSE In this work we present a dual-phase diffusion tensor imaging (DTI) technique that incorporates a correction scheme for the cardiac material strain, based on 3D myocardial tagging. METHODS In vivo dual-phase cardiac DTI with a stimulated echo approach and 3D tagging was performed in 10 healthy volunteers. The time course of material strain was estimated from the tagging data and used to correct for strain effects in the diffusion weighted acquisition. Mean diffusivity, fractional anisotropy, helix, transverse and sheet angles were calculated and compared between systole and diastole, with and without strain correction. Data acquired at the systolic sweet spot, where the effects of strain are eliminated, served as a reference. RESULTS The impact of strain correction on helix angle was small. However, large differences were observed in the transverse and sheet angle values, with and without strain correction. The standard deviation of systolic transverse angles was significantly reduced from 35.9±3.9° to 27.8°±3.5° (p<0.001) upon strain-correction indicating more coherent fiber tracks after correction. Myocyte aggregate structure was aligned more longitudinally in systole compared to diastole as reflected by an increased transmural range of helix angles (71.8°±3.9° systole vs. 55.6°±5.6°, p<0.001 diastole). While diastolic sheet angle histograms had dominant counts at high sheet angle values, systolic histograms showed lower sheet angle values indicating a reorientation of myocyte sheets during contraction. CONCLUSION An approach for dual-phase cardiac DTI with correction for material strain has been successfully implemented. This technique allows assessing dynamic changes in myofiber architecture between systole and diastole, and emphasizes the need for strain correction when sheet architecture in the heart is imaged with a stimulated echo approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying Dynamic Myofiber Aggregate Reorientation in Dilated Cardiomyopathy Using In Vivo Magnetic Resonance Diffusion Tensor Imaging

BACKGROUND The objective of this study is to assess the dynamic alterations of myocardial microstructure and strain between diastole and systole in patients with dilated cardiomyopathy relative to healthy controls using the magnetic resonance diffusion tensor imaging, myocardial tagging, and biomechanical modeling. METHODS AND RESULTS Dual heart-phase diffusion tensor imaging was successfully...

متن کامل

Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER)

Diffusion tensor imaging is widely used in research and clinical applications, but still suffers from substantial artifacts. Here, we focus on vibrations induced by strong diffusion gradients in diffusion tensor imaging, causing an echo shift in k-space and consequential signal-loss. We refined the model of vibration-induced echo shifts, showing that asymmetric k-space coverage in widely used P...

متن کامل

Evaluation of Simultaneous Dual-radioisotope SPECT Imaging Using 18F-fluorodeoxyglucose and 99mTc-tetrofosmin

Objective(s): Use of a positron emission tomography (PET)/single-photonemission computed tomography (SPECT) system facilitates the simultaneousacquisition of images with fluorine-18 fluorodeoxyglucose (18F-FDG) andtechnetium (99mTc)-tetrofosmin. However, 18F has a short half-life, and 511keV Compton-scattered photons are detected in the 99mTc energy window.Therefore, in this study, we aimed to ...

متن کامل

Direct comparison of in-vivo and post-mortem spin-echo based diffusion tensor imaging in the porcine heart

Background Spin-echo based cardiac diffusion tensor imaging (DTI) is highly sensitive to myocardial strain [1]. Imaging during systolic contraction requires precise planning of the sequence timing [2]. Second order motion compensated diffusion encoding has recently been proposed for small animal imaging [3] to reduce the impact of myocardial strain on the diffusion tensor. It is the objective o...

متن کامل

Simulation and patient studies of scatter correction in cardiac SPECT imaging

Introduction: Myocardial perfusion imaging is a nuclear medicine imaging method that is used to detect coronary artery diseases. One of the main sources of error in this imaging method is the detection of Compton scattered photons in the photopeak energy window used for data acquisition. This results in the degradation of the image contrast, and therefore decreases the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014